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3) The 75 percent BW element  design  over  a  quarter-hemi- 
sphere  maximum VSWR value of 16, and  consequently, to be 
practical, will require  an  elaborate  matching  network. 

4) It is apparent  that,  with  a  careful  aperture design,  a  dual 
ridge  rectangular  waveguide  offers  a  practical  solution  for  a 
wide-band  phased  array element. This conclusion is confirmed 
by the results of [ 71 . 

5) The present  study  does  not  consider  the  question of 
polarization. A minor  addition to the  computer  program will 
yield the  axial  ratios  and  the  tilt angles. 
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The Design of Small Slot Arrays 

ROBERT S. ELLIOTT, FELLOW, IEEE, AND L. A. KURT2 

Alstrrrcf-The  differences  in  mutual  coupling  for  a  centtal  slot  and 
a  peripheral  slot cannot be  ignored  in small arrays if  good patterns  and 
impedance  are to be obtained. A theory has been  developed  whereby 
the length and offset of every slot in the array can be  determined,  in 
the presence of mutual  coupling,  for a specified  aperture  distribution 
and  impedance  match.  The  theory  enlarges on Stevenson’s  method,  and 
uses a  modified  form  of  Booker’s  relation  based on Babinet’s  principle 
to treat  nonresonant  longitudinal  shunt slots in the broad  wall  of  a  rec- 
tangular  waveguide. A general  relation  between  slot  voltage  and  mode 
voltage is developed,  and  then  formulas  are  derived  for the active,  self-, 
and  mutual  admittances among slots. These  formulas  result in a  design 
procedure.  Analogous  treatments of inclined  series  slots  in  rectangular 
guide and of strip-line-fed slots are possible. Comparison  between 
various  experiments  and  the  theory is presented.  Tests of the  theory 
include the resonant  length  of  a  zero  offset slot, resonant  conductance 
versus  offset  and  resonant  conductance  versus  frequency  for  a  single 
slot,  and  self-  and  mutual  admittances  for two staggered slots. The 
design  and  performance  of  a  two-by-four  longitudinal  shunt  slot  array 
is also described. 
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C 
THEORY 

ONSIDER the  module  consisting of the solid lines shown 
in Fig. 1. This is a  section of rectangular  waveguide Ag/2 

long  containing  a  longitudinal  slot of length 22 and displace- 
ment x cut in  its  upper  broad wall. One- and  two-dimensional 
slot  arrays  can  be  constructed  by  placing  such  modules in 
tandem  and parallel  positions. 

The  module of Fig. 1 is a  two-port  device, the  ports being 
at z = +Ag/4 if the origin is taken  in  the waveguide  cross section 
which  bisects  the slot. But no loss  in  generality  occurs if the 
ports  are  taken  at  the  positions z = &Ag, shown  dotted  in Fig. 
1 ,  because  relations  between the  two  sets of ports involve 
simple known  linear  transformations.  It is convenient to  choose 
the  ports  at z = *Ag; with  this  convention  adopted,  the equiva- 
lent  circuit for  the  nth module1 is as  shown  in Fig. 2. 
This equivalent  circuit is subject to  the following  interpreta- 

tion. It is assumed that only the  dominant TElo mode  can 
propagate  in the waveguide.  This mode is represented  by  the 
voltage/current pair V, ,  I, at  the  input  port ( z  = -Az). A load 

1 For  notational  simplicity  the  single  index n is  used to identify this 
module, but it is important to remember that these  modules  can  be 
arranged to form  either  a  linear  array or a  planar  array.  Double sub- 
script  notation  could  be  used in the latter case. 
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,r-__---7 

I I ,' I 
,I I ' I  In  words, (4) states  that  the  active  admittance  at  the  terminals 

' .' of the  nth  module  equals  the  self-admittance of the  nth  slot , , . 5r--- - - -9 9p;,/*,* _ _ - - -  - ,,' 2 = h 9  I 

cc\y: 

plus  a  term  which accounts  for  mutual coupling.  This latter 
term is a  summation  which involves not only the  mutual 
admittances  between  ports,  but also the relative  voltages at  the 
different  ports. As the analysis  develops further,  it will be  seen 

c : - - - - - - . e  a ,,I that Y n A  is decisive  in  determining the  amplitude  and phase of 
.. , .Ag  the electric field in the  nth  slot.  Since  the  latter is dictated  by 

. ,  the desired  radiation  pattern, YnA becomes  the  focal  point of 
Y -  - -_  _ -  --I*. 

It is well known  that  the  scattering off  a shunt  element is 

,,' b l  ,," 
,c: 

, I z =  -4- , z = O  

I - 1  

I I ,  

I z=- ,. I c 4 

I array  design. 
z = - A  

Fig. 1. Waveguide/slot module. symmetrical  and given by 

1 Y,* 

2 G o  
B = C = - - - V  (5) 

"" in which B and C are  the  amplitudes of the back  and  forward 
T E l o  scattered  modes. In the  manner of Stevenson [ I ] ,  one 
can show  that B is related to  the  slot voltage Vns by  the I I I 

L = - A  2 = 0  z = \  equation 

Fig. 2. Equivalent circuit of nth module. 
112 7rx, B = - j  -a -  [.'a E:;] sin - Q (cos pz, 

admittance Y n L  is placed  at the  output  port (z = +X,). This 
admittance  (transformed  through 3hg/4) could  represent  what - cos kl , )  vns ( 6 )  
the  nth  module "sees" looking  down  its  branch line at all the 
modules  beyond, or it could  be  an  appropriate  termination,  wherein k = 27r/h0, and 7) is the  impedance of free  space; u and 
such as  an open  circuit. Y,A is the active admittance of the b are the  interior  dimensions of the  rectangular waveguide. 
nth slot.  It is an  important  parameter  in  this analysis and  its When (5) and (6) are  combined,  one  obtains 
meaning  can  be  appreciated  by  considering the  interrelations 
among &l the modules. 

To account  for  mutual  coupling,  one can  write 

N 

in which Y m ,  is the  mutual  admittance  between  the  input 
ports m and n. Y,, is the  self-admittance of port n; that is, 

in which Y ,  is the value that Y n A  would  assume if all other 
input  ports were  short-circuited. Y ,  is commonly called the 
self-admittance of the  nth slot. 

Generally,  the  input  admittance  at  the  nth  port is 

= Y , ,  + x - Y m ,  = Y ,  + YnL + N ,  Vm 

m = l  Vn m = l  Vn 

in  which the prime  on  the  summation sign  means that  the  term 
m = n  has  been  excluded.  It  follows  that 

Y,A = Y ,  + x v, Y m n .  
N I  Vm 

m = l  

sin  -(cos 02, - cos kl,)  
XXn 

Q 

It will be  seen  shortly that (7) is one of the  two principal  design 
equations which  emerge from  the analysis. A study of (7) 
reveals that  the  mode voltage and  slot voltage  are in phase 
quadrature if Y E A / G o  is pure real. In  most  slot  array  design 
problems, Vns is governed  by the  pattern  requirements  and 
V ,  is a  common voltage  in  any given branch  line.  Thus if all 
the Vns slot voltages are  to be  in  phase with  each  other,  and 
all the  mode voltages V ,  are to  be in phase  with  each other, it 
follows  that all the active admittances YnA should have  a 
common  phase. A simple  choice is to require that all Y n A  be 
pure real. But  a  study of (4) indicates that, if Y n A  is to be 
pure real, in  general Y , ,  the self-admittance of the  nth  slot, 
will not be  pure real. In  other words,  when mutual  coupling 
is taken  :into  account,  one  cannot  expect  the  resonant self- 
conductance  data will be  pertinent  in  the design.  Indeed,  in 
many  practical  applications, the requisite  value of Y ,  can  be 
quite  far off resonance. 

The  other  principal design equation arises from  linking the 
performance of the  slot  array to  that of an  equivalent  dipole 
array via Babinet's  principle.  Clearly, if the usual assumption 
of an infinite  perfectly  conducting  ground  plane is made,  and 
if the feeding  currents of the  center-fed  strip  dipoles  match 
the  slot voltages of the  slots,  the  patterns will be  essentially 
the same. To get the impedance  characteristics to match also, 
one  needs to  place  a  load  impedance Z n L  in series with  the nth 
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equivalent  dipole to account  for  the  fact  that  the  resonant 
length of the  slot is affected  by  its  offset, whereas no corre- 
sponding  effect  exists  for  the  dipole. When this is done  and 
complex  powers  are  equated  for  corresponding  elements  in the 
two arrays, it can  be  shown [ 21 that 

In (8), Z,* is the active  impedance of the  nth  strip  dipole, 
defined  by 

Z,A  = z, + z n L  + 2 r z,,, N ,  Im 

m=l n 

wherein 2, is the self-impedance  of the dipole, ZnL is the load 
impedance  placed  in series with  it, Z , ,  is the  conventional 
mutual  impedance  between  dipoles calculable from  formulas 
such  as  those of Baker  and  LaGrone [ 3 ] ,  and I m / I ,  is the 
aperture  distribution.  Thus if the  pattern  requirement is known 
(so that Im/In  is known),  and if ( Z ,  -I- ZnL) is known as  a 
function of x, and I ,  (this  relation will be  deduced  shortly), 
then ZnA can  be calculated, placed  in (8), and Y n A / G o  can  be 
determined. 

Equation (8) permits  the  interesting  interpretation  that  the 
normalized  active  admittance of a  longitudinal  shunt  slot is 
equal to  Stevenson’s  expression for  the  resonant  normalized 
conductance  (the  factor  in  curly  brackets) divided  by the active 
impedance of the  corresponding  loaded  dipole  normalized  to 
73 a. 

Equation (8) also  applies for  the case of an  isolated  slot, 
in which  case ZnA reduces to  Z D  + Z L ,  with ZD the self- 
impedance of the  isolated  strip  dipole  and Z L  the load  imped- 
ance  in series with it whose  presence  models the reactive  effects 
of internal  higher  order  mode  scattering off the  slot  due  to 
its  offset.  This  serves to point  up  some of the  limitations of 
Stevenson’s  original  expression.  Not only  does it apply  only 
for resonant  length  slots, but  strictly it becomes  a less accurate 
approximation as the  slot  width  and/or  its  offset is increased. 
This is because Z D  is affected  by the width of the  strip  dipole, 
and Z L  is affected  by the offset of the slot. 

Equation (8) can  be partitioned [ 2 ]  to  yield the  first-order 
results 

Yn z m m  
\--, 

(cos 01, - cos kl,) sin - 
a 

Equation (1  1)  leads to  the  interesting  conclusion  that 

When use is made of (lo)-( 12), it is important to remember 
that Y , ,   Y , ,  are  admittances  associated  with  the mode volt- 
ages in the  slot  array,  and  that, whereas Z,, is the conven- 
tional  mutual  impedance  between  dipoles, Z,,  is the loaded 
self-impedance of the  nth dipole  since it  contains ZnL. 

EXPERIMENT 

If the foregoing  theory is valid, the  proper design of a  one- 
or  two-dimensional  longitudinal  shunt  slot  array  involves the 
choice of offsets  and  lengths  for the various  slots  such that (7) 
and (8) are  simultaneously satisfied for all values of n. One 
begins by  knowing  the desired aperture  distribution ( Vms/Vns 
for  the slots, or I ,  / I ,  for  the equivalent  dipoles)  and the rela- 
tive mode voltages Vm/Vn (these  would all be the same in a 
standing wave linear  array,  but  would  depend  on  the  selection 
of  main-line/branch-line  coupling  coefficients  in  a  planar  array). 
Then  knowledge of the  function ZnA(xl, .-, X N ,  1 1 ,  - a * ,  IN) 
permits  determination of all the lengths  and  offsets  such that 
the desired aperture  distribution is achieved,  and  such that  the 
individual  values of Y n A / G o  cause the branch line admittances 
and  main  line  admittances to  add  up  to give the desired  match. 

A key  ingredient  in  this  process is to  find the  function 
Z n A  (x1, --, xN, 11, -*, ZN). As mentioned  earlier,  the  mutual 
part of ZnA can  be  calculated  from  conventional  formulas if 
the  aperture  distribution is specified.  Now we turn  our  atten- 
tion to  the  determination of the self-part of Z n A ,  namely 
( Z ,  -t- Z n L ) .  If  we assume that (Zn + Z n L )  is essentially the 
same whether  the  other  dipoles are  present  and  open  circuited, 
or  absent,  then (2, + ZnL) = (ZSELF + ZLOAD);  that is, it 
equals the  loaded self-impedance of an isolated  dipole  (corre- 
sponding to  an  isolated  slot).  But  for  this  case (8) becomes 

- cos kZ,)2 sin2 % a } . 
Regardless  of the  shape of the  slot  (rectangular,  rounded  ends, 
dumbbell, etc.), if one meaxurex YSELFIGO as a function of 
offset x and  length 1, (13)  can  be  used to  express (Z, i- ZnL) 
as  a function of x, and I,. This can then  be used in (8) for all 
aperture  distributions  and  feeding  arrangements.  For  rectan- 
gular  slots, the theoretical values of Y S E L F / G O  obtained  by 
the  method of Khac [ 4 ]  can be used  in lieu of experimentally 
obtained  information. 

It is desirable to accumulate  the  data on Y S E L F / G O  in the 
universal form discovered  by  Stegen [ 51 and  illustrated  in Fig. 
9-5 of Jasik [6]. This figure  shows plots of the real and imagi- 
nary  parts of Y S E L F / G O  + G R E S / G O  versus 1 1 1 ~ ~ ~ .  The range 
of  greatest  use  in the design of slot  arrays is 0.95 < l / l R ~ s  < 
1.05 and  the  theoretical  work of Khac [ 41 supports  the assump- 
tion of universality  in  this  range. Fig. 9-5 of Jasik requires  his 
companion Figs.  9-6 and 9-7, in  which G R E S / G O  and 2lRES/hO 
are  plotted as functions of slot  offset. When polyfits  are  made 
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to  the  four curves  in  Fig.  9-5, 6, and  7 of Jasik, (2, -I- ZnL) 
can  be  expressed  in  a form easily  handled  by  a  computer. 

Fig. 9-7  of Jasik  leads to  a  first  test of the  theory. Stegen 
dealt  with  round  ended  slots  in  a  wall  0.050  in  thick.  The 
question arises as to  the length of the equivalent  strip  dipole 
of rectangular  contour  in  a wall of  "zero"  thickness. This can 
be determined  by  the following  argument. As the  offset x --f 0, 
the  amplitudes of all the  modes  scattered off the  slot  tend  to 
zero.  With  respect to  higher  order  mode  scattering,  this  has  the 
implication  for the  complementary  dipole  that  its  loading 
impedance  tends to  zero also. But  in  this  circumstance, (13) 
indicates that Z ~ E L F  should  be  pure real for  the  dipole when 
Y ~ E L F  is pure real for  the  slot.  Tai  has  shown [ 71 that  a  strip 
dipole of width  w  and  negligible  thickness is equivalent to  a 
cylindrical  dipole  of  diameter  d = w/2. Tai also provides  a  con- 
venient  formula [ 71 for  the impedance of a  cylindrical  dipole 
as a  function of its  length 22 and  its  radius a = d/2. Since  Stegen 
used slots  0.0625  in wide, if one places a = 0.0156 in in Tai's 
formula,  one can  deduce that 2l,/&, = 0.464,  wherein 21, is 
the  resonant  length  of  the  unloaded  strip dipole.  On the  other 
hand,  a  study of Fig. 9-7 of Jasik  reveals that Stegen's asymp 
totic value is 21,"lho = 0.483,  in  which 21,' is the  resonant 
length of his round  ended  slot  at  zero  offset.  From  this it fol- 
lows that f = 2Zro/2Z, = 1.04. This length  adjustment  factor is 
in  agreement  with the findings  of  Oliner [8 ] ,  who  attributes  a 
2  percent  correction  for  round  ends  and  a 2 percent  correction 
for walI thickness  in  this  situation. 

When the foregoing theory is used to  design slot  arrays, the 
procedure  just  described can  be  utilized to  determine  the  length 
adjustment  factor f. Experience  shows that  fis  quite sensitive to  
the b dimension of the waveguide, as well as to  wall thickness. 

A second  test  involves  a  prediction of resonant  conductance 
versus  offset for  an  isolated  slot.  Since  the  higher  order  mode 
scattering off  this  slot is nonpropagating  and thus  contributes 
primarily to  the storage of reactive  energy, it seems  reasonable 
to  assume that  the load  impedance ZL possesses  a  small resistive 
component RL. In  practical  circumstances, the dipole self- 
impedance ZD has  a resistive component  in  the  neighborhood 
of 73 a, and  thus  one  should  expect  that RL < RD. For a 
resonant  slot X, = -XD, and in this  case (8) can  be  approxi- 
mated  by 

(COS /31r - COS k1,)2 sin2 - . (14) 
a 

For  standard X-band  guide,  a frequency of 9.375 GHz, and  a 
length  adjustment  factor f = 1.04, (14)  yields  the solid  curve 
found  in Fig. 3. Stegen's experimental  points  are  shown  for 
comparison. 

It  should  be recognized that  the agreement  seen  between 
theory  and  experiment  in Fig. 3 is not  a case of adjusting  a 
parameter  in  the  theoretical  formula  to get  curve  fitting. All 
that has  been  done  in  (14) is to ignore RL and assume that  the 
equivalent  dipole is resonant. A plot of the original  Stevenson 
formula would lie 20  percent  below  the solid  curve of Fig. 3  at 
the low  end,  and  10  percent below it at  the high end. 

A third  test involving  an  isolated slot  concerns the  frequency 
dependence of resonant  conductance.  Stegen [ 51 found  exper- 
imentally that his  curve of resonant  length  versus  offset  for  a 
longitudinal  shunt  slot (Fig. 9-7 of Jasik) is universal  in the 
sense that if the  offset  remains  constant, 21,"/ho also remains 
essentially constant even though  the  frequency varies. This  has 

0.60 
0.70 

0.50 

0.00 

W0 2 0.30 
W' 

0.20 
+ 
0 
2 
z n 

I- 
8 0.10 

5 0.08 
z 8 0.06 
a 

0.05 - < 0.04 
a B 
0 

0.02 

0.01 
0 OX60 0.100 0.150 0.200  0.250 

SLOTOFFSET IN INCHES 

Fig. 3. Gr/G,  for resonant longitudinal slot versus offset 9.375 GHz, 
a = 0.900 in, I ,  = 0.400 in, slot width = 0.0625 in, wall thickness = 
0.050 in. Points are Stegen's  measured values; curve is theoretical. 

0.8 I I - THEORY 
Q EXPERIMENT Q 

0.7 

a 
'- 0.6 
c) 

c) 

z 
W' 
0 

a 6 0.5 
2 
n z 
8 e 0.4 
IL! 
a 
I 

z 
0.3 

0.2 

0.1 
8.4 8.8 9.2 9.6 10.0 10.4  10.8 

RESONANT  FREQUENCY,  GHz 

Fig. 4. Resonant conductance versus  frequency. 

the implication that if k2, remains  constant  in  (14),  that is, the 
slot  length is continually  adjusted  as  the  frequency is changed 
so as to maintain  resonance,  then  for  a  slot of a  given offset, 
G J G ,  is a  function of .frequency  only because /3/k varies with 
frequency.  For  a  slot of offset  0.183  in, (14) yields the solid 
curve  shown  in  Fig. 4. Stegen's experimental  data  points are 
shown  for  comparison. 

Now let  us  consider  situations involving more  than  just  one 
isolated  slot. As a  first  step, an array of two  slots,  one  each  in 
two parallel  waveguides,  with the  slots staggered  longitudinally 
a  quarter of  a  guide  wave-length, was constructed  with  the 
dimensions  shown in Fig.  5 and  imbedded in an 8-in  by  10-in 
ground  plane.  This  array was used to test  the  validity of 
(10)-(12) in the following  way.  With  one  slot  covered  over 
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INPUT 
PORT 
NO. 2 

OUTPUT 
PORT 
NO. 2 

INPUT 

t-- NO. 1 

L.J. _ _  PORT 

r c 2 y - I  ’ OUTPUT 
PORT 
NO. 1 - I 

DIMENSIONS(lnches1 

2 i y  = 0.668 a = 0.913 

2f 0 = 0.682 t = 0.020 
x, = 0.167 b = 0.380 

x: = 0.187 w = 0.094 

f = 8.815 GHr 

Fig. 5 .  Two-slot array. 

TABLE I 
MEASURED AND COMPUTED DATA FOR  TWO-SLOT ARRAY 

Qurntity Computed  Value Measured  Value 

YIIG,  (Isolated)  

0 . 6 2  + j 0 .065  V2/Go  (Isolared) 

0 . 5 2  t j 0.065 

2 1 1  

7-22 

2 1 2  

Yl‘GO 

YZIG, 0 .64  + j 0.05 

6 3 . 9 3  - j 7 . 9 9  

6 9 . 7 9  - j 7 . 3 2  

- 1 6 . 3 2  + j 4 . 4 0  

0.58 + j 0 . 0 5  

0 . 6 6  + j 0 . 0 6  

0 . 5 6 . +  j 0.06  

Y12/GO 0 . 1 5 3  0 . 1 4 6  & 

with  conducting  tape,  a  short  circuit was placed 3hg/4  beyond 
the  other  slot,  and  a  measurement was taken of its  input  admit- 
tance. This resulted  in the  data  shown  in  the  first  two  rows of 
Table I. A length  contraction  factor f = 1.03  was found to  
apply  for  this  configuration  and used to determine I ,  and I p .  
Equation (8) then gave 

33.76 43.72 

YJG, (isolated) Y2/Go (isolated) 
211 = z22 = (15) 

from  which the  entries  in  the  third  and  fourth  rows of Table I 
were obtained. 

Z l l  and Z 2 2  as they  appear  in (15) are the  loaded self- 
impedances of the  strip  dipoles  equivalent to each  isolated  slot. 
Strictly  speaking,  they  are  not  the  same as the  quantities  one 
should use when other dipoles are  present but open-circuited; 
however, at this  slot  spacing  the  approximation is a  good  one, 
and  therefore  the  entries  for Z l l  and Z 2 2  in  Table I will be 
used  in ( lo)-( 1 2). 

The calculation  of  mutual  dipole  impedance was made 
using the formulas of Baker  and  LaGrone [3 ] ,  and provides 
the  fifth  row  entry in Table I. 

Equation  (10)  predicts  that if the  conducting  tape covering 
the second  slot is removed and  replaced  by  a  short  circuit Ag 
from  the  center of the second  slot,  and  then  the  input  admit- 
tance of the first slot is measured, the result  should  satisfy 

Y l  33.76 y2 43.72 _-  - _ -  - 
Go Z l l  -(z122/z22) Go z22 -(Z122/z11)’  

(16) 

When the values  listed  in  Table I for Z l l ,  Z,,, and Z12 are 
used  in (16), computed values  of Y1/Go and Y2/GO can  be 
ascertained.  These  values  have  been  entered in the  sixth  and 
seventh  rows of Table I. The measured  values  are  listed  along- 
side for comparison. 

Finally,  (12) of the  theory  can  be  put  in  the  form 

-- YI2-[ -.-.- y1 y2 -G22 1”’ 
(17) 

Go Go Go 211222 

When the various  computed values found in Table I are  inserted 
in  (17),  the  prediction is that Y12/Go = 0.153 L-3.1’. 

The  accurate  measurement of Y12/Go is difficult.  After 
some  experimentation,  the  following  procedure was adopted. 
Short  circuits were  placed  3Ag/4 beyond  each  slot.  Slotted lines 
were put in  tandem  with  both  input  ports. A variable attenu- 
ator was placed  before  one  slotted line, and  a variable  phase 
shifter  before  the  other.  The  two  branches were fed  through  a 
conventional T junction.  But  from  (4), 

It  follows  that  one  can select the  attenuator  setting  such  that 
I V l / V 2  I = 1. If then  the  phase of Y1/Y2 is varied, YIA/Go 
and Y2A/Go will have loci  which  are circles of the  same size, 
centered  around Yl/Go and Y2/Go, respectively. The  radius 
of these  two  equal circles is I Y12/Go 1. The phase of the 
mutual  admittance  can  be  determined  from  corresponding 
points on the  two loci. 

This  experimental  procedure  resulted  in  the  Smith  chart 
shown in Fig. 6 .  From  this  data,  the average  measured  value of 
mutual  admittance was deduced to be Y12/Go =0.146L-4.2O. 

Lastly,  let us consider the application of (7) and  (8) to the 
design of a  two-dimensional  array.  The  procedure  can  be out- 
lined  as  follows. 

a) Select the  frequency of operation  and  the waveguide 
dimensions. 

b) Deduce the  length  contraction  factor f. This can  be  done 
as in  the earlier discussion of resonant  length  for  zero 
offset. 

c) Specify the slot voItage distribution  needed to get  the 
desired pattern  and  the  sum of the active  admittances 
desired in each  branch  line waveguide. 

d) Solve (7) and  (8)  simultaneously to  give those values of 
x ,  and I, which  satisfy  the  required  aperture  distribu- 
tion  and  admittance level. 

When the above  procedure was applied to  the design of a 
two-by-four  array, the results  were  as  shown  in Fig. 7. The 
specified admittance level was 

A X 2 Y,A/G, = 2 Y,A/G, = 2 +io. 
n= 1 n = 5  

The measured  values  were 

8 

YnA/Go = 1.90 + j0 YnA/G0 = 1.94 +io.  
n = l  n=5  
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Fig. 6. Active  admittance  loci  for  two-slot  array. 

- 
No.  n 
Slot 

1 

2 

3 

4 

5 

6 

7 

- 

a - 

Offset x 
(1nches)n 

-0.122 

M.Oa, 

-0.099 

+0.060 

-0.060 

x1.099 

-0.060 
x1.122 

Length 21: 
(Inches) 

0.708 

0.667 

0.693 
0.699 

0.699 

0.693 

0.667 
0.708 

OFFSETS (Inches) 

a = 0.924 

t = 0.025 
b = 0.123 

w = 0.064 

f = 8.930 GHz 

8 by 10 inch Grwnd Plane 

Fig. 7. Two-by-four  slot  array. 

The specified  aperture  distribution was uniform  amplitude/ 
uniform  phase, so the  predicted  pattern  has  a  broadside  beam, 
symmetrical  sidelobes,  and  a 13.5-dB  sidelobe level. The  exper- 
imental H-plane pattern is shown  in Fig. 8. 

A study of the  table of slot  lengths  and  offsets (Fig. 7) 
reveals  several interesting  and surprising  things. First,  there is a 
2:  1 range  in slot  offsets. (Were one  to ignore  mutual  coupling, 
or  include it but ignore its variability  from  slot to slot, al l  off- 
sets would be  the same.)  Second, no slot in this  array is self- 
resonant;  each  slot is detuned  appropriately to  make  the indi- 
vidual active admittance  resonant.  Third,  there is a  quadrant  I/ 
quadrant I11 and  quadrant  II/quadrant IV symmetry to  the 
lengths  and  offsets,  but no symmetry  around  the X axis  nor 
around  the Y axis. This  can  be  traced to nonsymmetrical 
effects caused  by  staggering the offsets. 

The range of lengths  and  offsets  found  for  this  two-by-four 
array  illustrates the general  observation  that  small  arrays  pre- 
sent  a  more  difficult design problem  than  do large  arrays.  In 
the  latter, only  elements  near an edge  “see”  a different  mutual 
coupling  environment, so achieving the  proper active  admit- 
tance  becomes  simpler.  Further,  mechanical  and  electrical 
tolerances  ease off as the  array  gets larger [ 91. 

Though  the  details  are  not being reported  here,  the  above 
procedure  has  been  used  successfully to  design  a  12-slot  linear 
array  for  a 30 dB side lobe level, a  19-slot  linear  array for 
asymmetric  side  lobes (all at  20  dB  except  the  inner  three  on 

-.” 
.180 .144 -108 -72 36 0 36 72 108 144 180 

ANGLE  FROM  BROADSIDE,  DEGREES 

Fig. 8. H-plane  pattern of two-by-four  array  described in  Fig. 7, 
f = 8.933 GHz. 

one  side of the main beam at 30 dB) and  a  52element two- 
dimensional  slot  array  with  a  uniform  aperture  distribution. 

CONCLUSIONS 

A theory  has  been  presented which  can account  for  the  array 
behavior  of  longitudinal  shunt  slots in terms of the  character- 
istics of complementary dipoles. Formulas  for  active, self-, and 
mutual admittances of longitudinal  slots have  been  derived. 
Slot  arrays  can  be  designed  by  choosing the lengths  and  offsets 
of individual  slots  such that (7) yields  a slot voltage distribution 
consistent  with the desired pattern,  and  such  that (8) yields an 
active admittance  distribution  consistent  with  the  feed  and 
match  requirements of the array. 

The analysis  can  be repeated,  in  a  step-by-step  analog,  for 
the case  of  inclined series slots  in  the  broad wall of rectangular 
waveguides. It  can also be extended to  arrays of strip-line-fed 
slots, 

The  theory  has  been  tested  experimentally  in  a  variety of 
situations involving  a single slot,  a  pair of slots,  and  a  small 
two-dimensional  array.  In  general,  the  agreement  has  been 
found  to be  quite  satisfactory. 
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如 何 学 习 天 线 设 计 

 

天线设计理论晦涩高深，让许多工程师望而却步，然而实际工程或实际工作中在设计天线时却很
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