214

3) The 75 percent BW element design over a quarter-hemi-
sphere maximum VSWR value of 16, and consequently, to be
practical, will require an elaborate matching network.

4) 1t is apparent that, with a careful aperture design, a dual
ridge rectangular waveguide offers a practical solution for a
wide-band phased array element. This conclusion is confirmed
by the results of [7].

5) The present study does not consider the question of
polarization. A minor addition to the computer program will
yield the axial ratios and the tilt angles.
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The Design of Small Slot Arrays

ROBERT S. ELLIOTT, FELLOW, IEEE, AND L. A, KURTZ

Abstract—The differences in mutual coupling for a central slot and
a peripheral slot cannot be ignored in small arrays if good patterns and
impedance are to be obtained. A theory has been developed whereby
the length and offset of every slot in the array can be determined, in
the presence of mutual coupling, for a specified aperture distribution
and impedance match. The theory enlarges on Stevenson’s method, and
uses a modified form of Booker’s relation based on Babinet’s principle
to treat nonresonant longitudinal shunt slots in the broad wall of a rec-
tangular waveguide. A general relation between slot voltage and mode
voltage is developed, and then formulas are derived for the active, self-,
and mutual admittances among slots, These formulas result in a design
procedure. Analogous treatments of inclined series slots in rectangular
guide and of strip-line-fed slots are possible. Comparison between
various experiments and the theory is presented. Tests of the theory
include the resonant length of a zero offset slot, resonant conductance
"versus offset and resonant conductance versus frequency for a single
siot, and self- and mutual admittances for two staggered slots. The
design and performance of a two-by-four longitudinal shunt slot array
is also described.
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THEORY

ONSIDER the module consisting of the solid lines shown

in Fig. 1. This is a section of rectangular waveguide A,/2
long containing a longitudinal slot of length 2/ and displace-
ment x cut in its upper broad wall. One- and two-dimensional
slot arrays can be constructed by placing such modules in
tandem and parallel positions.

The module of Fig. 1 is a two-port device, the ports being
at z = *A,/4if the origin is taken in the waveguide cross section
which bisects the slot. But no loss in generality occurs if the
ports are taken at the positions z = t)\g, shown dotted in Fig.
1, because relations between the two sets of ports involve
simple known linear transformations. It is convenient to choose
the ports at z = *A,; with this convention adopted, the equiva-
lent circuit for the nth module! is as shown in Fig. 2.

This equivalent circuit is subject to the following interpreta-
tion. It is assumed that only the dominant TE,, mode can
propagate in the waveguide. This mode is represented by the
voltage/current pair V,,, I,, at the input port (z = —},). A load

1 For notationai simplicity the single index # is used to identify this
module, but it is important to remember that these modules can be
arranged to form either a linear array or a planar array. Double sub-
script notation could be used in the latter case.

0018-926X/78/0300-0214$00.75 © 1978 IEEE
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P —— n
vnl vA v
z= -Ag z=0 2= ’\g
Fig. 2. Equivalent circuit of nth module.

admittance Y,” is placed at the output port (z = +A,). This
admittance (transformed through 3\,/4) could represent what
the nth module “‘sees™ looking down its branch line at all the
modules beyond, or it could be an appropriate termination,
such as an open circuit. ¥,4 is the active admittance of the
nth slot. It is an important parameter in this analysis and its
meaning can be appreciated by considering the interrelations
among all the modules.
To account for mutual coupling, one can write

N
I, = 2 Vi Yian (n
m=1

in which Y,,, is the mutual admittance between the input
ports m and n. Y, , is the self-admittance of port n; that is,

Yop =Y, + YnL (2)

in which Y, is the value that ¥,4 would assume if all other
input ports were short-circuited. Y,, is commonly called the
self-admittance of the nth slot.

Generally, the input admittance at the nth port is

i In A L = Vm
Yplt=—=Y,* + Y- = — Ymn
Vn m=1 Vn

3)

in which the prime on the summation sign means that the term
m = n has been excluded. It follows that

N’ Vm
YA =Ypt D 7 Y )
m=1 "n
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In words, (4) states that the active admittance at the terminals
of the nth module equals the self-admittance of the nth slot
plus a term which accounts for mutual coupling. This latter
term is a summation which involves not only the mutual
admittances between ports, but also the relative voltages at the
different ports. As the analysis develops further, it will be seen
that Y,,A is decisive in determining the amplitude and phase of
the electric field in the nth slot. Since the latter is dictated by
the desired radiation pattern, Y,,* becomes the focal point of
array design.

It is well known that the scattering off a shunt element is
symmetrical and given by

17,4
B=C=—— Vi (5)
2 Gy

in which B and C are the amplitudes of the back and forward
TEjo scattered modes. In the manner of Stevenson [1], one
can show that B is related to the slot voltage V,S by the
equation

_ 2 em e
“ G, ey | e P

—cos kl,)V,,S 6)

wherein k = 2@/Ag, and 7 is the impedance of free space; ¢ and
b are the interior dimensions of the rectangular waveguide.
When (5) and (6) are combined, one obtains

1 8 (a/b) 1/2
V,= j *
" YALGe || 76 @rR)
X,
» sin — (cos I, — cos ki) ‘ V,.S. 7
a

It will be seen shortly that (7) is one of the two principal design
equations which emerge from the analysis. A study of (7)
reveals that the mode voltage and slot voltage are in phase
quadrature if Y,4/Gy is pure real. In most slot array design
problems, V5 is governed by the pattern requirements and
V, is a common voltage in any given branch line. Thus if all
the ¥,,5 slot voltages are to be in phase with each other, and
all the mode voltages V, are to be in phase with each other, it
follows that all the active admittances ¥,2 should have a
common phase. A simple choice is to require that all ¥, be
pure real. But a study of (4) indicates that, if Y,4 is to be
pure real, in general Y, the self-admittance of the nth slot,
will not be pure real. In other words, when mutual coupling
is taken ‘into account, one cannot expect the resonant self-
conductance data will be pertinent in the design. Indeed, in
many practical applications, the requisite value of Y, can be
quite far off resonance.

The other principal design equation arises from linking the
performance of the slot array to that of an equivalent dipole
array via Babinet’s principle. Clearly, if the usual assumption
of an infinite perfectly conducting ground plane is made, and
if the feeding currents of the center-fed strip dipoles match
the slot voltages of the slots, the patterns will be essentially
the same. To get the impedance characteristics to match also,
one needs to place a load impedance Z, L in series with the nth
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equivalent dipole to account for the fact that the resonant
length of the slot is affected by its offset, whereas no corre-
sponding effect exists for the dipole. When this is done and
complex powers are equated for corresponding elements in the
two arrays, it can be shown [2] that

v, A 1 4(a/b)
= (cos i1,
Go Z,4/73{ 0.61m(B/k)
%,
— cos ki, )? sin2 — ] . (8)
a

In (8), Z,4 is the active impedance of the nth strip dipole,
defined by

NI
ZA=ZytZ, b+ I—"‘Zmn, (9

m=1 *‘n

wherein Z,, is the self-impedance of the dipole, Z,,L is the load
impedance placed in series with it, Z,,, is the conventional
mutual impedance between dipoles calculable from formulas
such as those of Baker and LaGrone [31, and I,, /I, is the
aperture distribution. Thus if the pattern requirement is known
(so that I, /I,, is known), and if (Z, + Z,%) is known as a
function of x,, and /, (this relation will be deduced shortly),
then Z,4 can be calculated, placed in (8), and Y,,4 /G can be
determined.

Equation (8) permits the interesting interpretation that the
normalized active admittance of a longitudinal shunt slot is
equal to Stevenson’s expression for the resonant normalized
conductance (the factor in curly brackets) divided by the active
impedance of the corresponding loaded dipole normalized to
73 Q.

Equation (8) also applies for the case of an isolated slot,
in which case Z,4 reduces to Zp + Z;, with Z, the self-
impedance of the isolated strip dipole and Z; the load imped-
ance in series with it whose presence models the reactive effects
of internal higher order mode scattering off the slot due to
its offset. This serves to point up some of the limitations of
Stevenson’s original expression. Not only does it apply oaly
for resonant length slots, but strictly it becomes a less accurate
approximation as the slot width and/or its offset is increased.
This is because Zp is affected by the width of the strip dipole,
and Z; is affected by the offset of the slot.

Equation (8) can be partitioned [2] to yield the first-order
results

4(a/b
_de/b) (cos Bl,, — cos k)2 sin? Tn
Y, 0.617(B/k) a
Ennl13)= Y @mnl 13V /(Zmm[73)
m=1
My
(cos fl,, —cos kl,, ) sin ——
Ymn mn a
== * . (1)
Yn me

X,
(cos fl, — cos ki) sin—
a
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Equation (11) leads to the interesting conclusion that

Ymn? _ Zmn2

= . (12)
Ym¥n ZmmZnn

When use is made of (10)-(12), it is important to remember
that Y,,, Y,,, are-admittances associated with the mode volt-
ages in the slot array, and that, whereas Z,,, is the conven-
tional mutual impedance between dipoles, Z,,, is the loaded
self-impedance of the nth dipole since it contains Z,, L.

EXPERIMENT

If the foregoing theory is valid, the proper design of a one-
or two-dimensional longitudinal shunt slot array involves the
choice of offsets and lengths for the various slots such that (7)
and (8) are simultaneously satisfied for all values of n. One
begins by knowing the desired aperture distribution (¥,,,S/ V,S
for the slots, or I, /I, for the equivalent dipoles) and the rela-
tive mode voltages V,,/V, (these would all be the same in a
standing wave linear array, but would depend on the selection
of main-line/branch-line coupling coefficients in a planar array).
Then knowledge of the function Z,4(xq1, ™, Xn, I1, =, In)
permits determination of all the lengths and offsets such that
the desired aperture distribution is achieved, and such that the
individual values of ¥,4 /Ggq cause the branch line admittances
and main line admittances to add up to give the desired match.

A key ingredient in this process is to find the function
Z,4(xq, =, XN, 11> ' Iy). As mentioned earlier, the mutual
part of Z,4 can be calculated from conventional formulas if
the aperture disiribution is specified. Now we turn our atten-
tion to the determination of the self-part of Z,4, namely
(Z, + Z,L). If we assume that (Z,, + Z,L) is essentially the
same whether the other dipoles are present and open circuited,
or absent, then (Z, + Z,%) = (ZggrLr + ZLoap); that is, it
equals the loaded self-impedance of an isolated dipole (corre-
sponding to an isolated slot). But for this case (8) becomes

os I,

ZsrrLr T Zr0AD =

73 | 4(a/b) (

YseLr/Go | 0.61a(B/k)

X,
— cos kl,)? sin2 — } . (13)
a
Regardless of the shape of the slot (rectangular, rounded ends,
dumbbell, etc.), if one measures Ygryr/Go as 2 function of
offset x and length I, (13) can be used to express (Z,, + Z,L)
as a function of x,, and ,,. This can then be used in (8) for al!
aperture distributions and feeding arrangements. For rectan-
gular slots, the theoretical values of Yggpyr/Go obtained by
the method of Khac [4] can be used in lieu of experimentally
obtained information.

It is desirable to accumulate the data on Yggr,r/Go in the
universal form discovered by Stegen [5] and illustrated in Fig.
9-5 of Jasik [6]. This figure shows plots of the real and imagi-
nary parts of Ygr,#/Go + Gres/Go versus lflg g 5. The range
of greatest use in the design of slot arrays is 0.95 <I/lgrs <
1.05 and the theoretical work of Khac [4] supports the assump-
tion of universality in this range. Fig. 9-5 of Jasik requires his
companion Figs. 9-6 and 9-7, in which Gg gs/Gg and 2lg gs/Ao
are plotted as functions of slot offset. When polyfits are made
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to the four curves in Fig. 9-5, 6, and 7 of Jasik, (Z,, + Z,L)
can be expressed in a form easily handled by a computer.

Fig. 9-7 of Jasik leads to a first test of the theory. Stegen
dealt with round ended slots in a wall 0.050 in thick. The
question arises as to the length of the equivalent strip dipole
of rectangular contour in a wall of “zero™ thickness. This can
be determined by the following argument. As the offset x > 0,
the amplitudes of all the modes scattered off the slot tend to
zero. With respect to higher order mode scattering, this has the
implication for the complementary dipole that its loading
impedance tends to zero also. But in this circumstance, (13)
indicates that Zggy ¢ should be pure real for the dipole when
YggLp is pure real for the slot. Tai has shown [7] that a strip
dipole of width w and negligible thickness is equivalent to a
cylindrical dipole of diameter d = w/2. Tai also provides a con-
venient formula [7] for the impedance of a cylindrical dipole
as a function of its length 27 and its radius ¢ = d/2. Since Stegen
used slots 0.0625 in wide, if one places ¢ = 0.0156 in in Tai’s
formula, one can deduce that 2I,/As = 0.464, wherein 2/, is
the resonant length of the unloaded strip dipole. On the other
hand, a study of Fig. 9-7 of Jasik reveals that Stegen’s asymp-
totic value is 2,°/Ag = 0.483, in which 27,° is the resonant
length of his round ended slot at zero offset. From this it fol-
lows that £ = 21,°/2l, = 1.04. This length adjustment factor is
in agreement with the findings of Oliner [8], who attributes a
2 percent correction for round ends and a 2 percent correction
for wall thickness in this situation.

When the foregoing theory is used to design slot arrays, the
procedure just described can be utilized to determine the length
adjustment factor f. Experience shows that fis quite sensitive to
the b dimension of the waveguide, as well as to wall thickness.

A second test involves a prediction of resonant conductance
versus offset for an isolated slot. Since the higher order mode
scattering off this slot is nonpropagating and thus contributes
primarily to the storage of reactive energy, it seems reasonable
to assume that the load impedance Z;, possesses a small resistive
component Ry . In practical circumstances, the dipole seli-
impedance Zp has a resistive component in the neighborhood
of 73 2, and thus one should expect that Ry, € Rp. For a

resonant slot X; = —Xp, and in this case (8) can be approxi-
mated by
G, 173 4(a/b)

mx
— =— {—————(cos Bl — cos kl,)? sin? —
Go Rp |0.61n(B/K) a

(14)

For standard X-band guide, a frequency of 9.375 GHz, and a
length adjustment factor f = 1.04, (14) yields the solid curve
found in Fig. 3. Stegen’s experimental points are shown for
comparison.

It should be recognized that the agreement seen between
theory and experiment in Fig. 3 is not a case of adjusting a
parameter in the theoretical formula to get curve fitting. All
that has been done in (14) is to ignore R;, and assume that the
equivalent dipole is resonant. A plot of the original Stevenson
formula would lie 20 percent below the solid curve of Fig. 3 at
the low end, and 10 percent below it at the high end.

A third test involving an isolated slot concerns the frequency
dependence of resonant conductance. Stegen [5] found exper-
imentally that his curve of resonant length versus offset for a
longitudinal shunt slot (Fig. 9-7 of Jasik) is universal in the
sense that if the offset remains constant, 2/,°/\q also remains
essentially constant even though the frequency varies. This has

217

0.70 |
0.60

0.20 /

0.10 7

o o
8 3
O\

N

0.08 7

°
2
.

g
=)
a

=]
S
[~

NORMALIZED RESONANT CONDUCTANCE, G, /G,

o
<]
1

0.01

1] 0.050 0.100 0.150

SLOT OFFSET IN INCHES

0.200 0.250

Fig. 3. G,/G, for resonant longitudinal slot versus offset 9.375 GHz,
a = 0.900 in, b = 0.400 in, slot width = 0.0625 in, wall thickness =
0.050 in. Points are Stegen’s measured values; curve is theoretical.

0.8 I T
—— THEORY
e @  EXPERIMENT
0.7

(Da \

o 08

o 23

(3]

=

=

5 05

2

[=]

=

] X

o o4

N

-

<

: \

0.3

[=}

2 @\
0.2 \
0.1

8.4 8.8 9.2 2.6 10.0 104 10.8

RESONANT FREQUENCY, GHz

Fig. 4. Resonant conductance versus frequency.

the implication that if kI, remains constant in (14), that is, the
slot length is continually adjusted as the frequency is changed
s0 as to maintain resonance, then for a slot of a given offset,
G,/Gg is a function of frequency only because §/k varies with
frequency. For a slot of offset 0.183 in, (14) yields the solid
curve shown in Fig. 4. Stegen’s experimental data points are
shown for comparison.

Now let us consider situations involving more than just one
isolated slot. As a first step, an array of two slots, one each in
two parallel waveguides, with the slots staggered longitudinally
a quarter of a guide wave-length, was constructed with the
dimensions shown in Fig. 5 and imbedded in an 8-in by 10-in
ground plane. This array was used to test the validity of
(10)-(12) in the following way. With one slot covered over
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DIMENSIONS(inches)

247 =0.668 a=0913
xq =0.167 b =0.380
2¢8 = 0.682 t=0.020
X3 = 0.187 w=0.094
= 8815 GHz
Fig. 5. Two-slot array.

TABLEI
MEASURED AND COMPUTED DATA FOR TWO-SLOT ARRAY

Quantity Measured Value Computed Value

Y,/G, (Isolated) 0.52 +j 0.063

YZ/GQ {Isolated} 0.62 +j0.065

zy, 63.93 - §7.99
232 69.79 - j 7.32
E 16,32 +j .40
Y,/G, 0.58 + j 0,05 0.56:+ 3 0.06
Y2/G, 0.64 +30.05 0.66 + 0.06
¥1,/G, 0.146 |-4.27 0.153 |=3.1°

with conducting tape, a short circuit was placed 3),/4 beyond
the other slot, and a measurement was taken of its input admit-
tance. This resulted in the data shown in the first two rows of
Table I. A length contraction factor f = 1.03 was found to
apply for this configuration and used to determine Iy and Is.
Equation (8) then gave

33.76 43.72

Iy s Zga=—————  (15)
7y /Ge Gsolated) 22 Y4/Gy (isolated)

from which the entries in the third and fourth rows of Table 1
were obtained.

Z,41 and Zsy as they appear in (15) are the loaded self-
impedances of the strip dipoles equivalent to each isolated slot.
Strictly speaking, they are not the same as the quantities one
should use when other dipoles are present but open-circuited;
however, at this slot spacing the approximation is a good one,
and therefore the entries for Z;4 and Z5o in Table I will be
used in (10)-(12).

The calculation of mutual dipole impedance was made
using the formulas of Baker and LaGrone [3], and provides
the fifth row entry in Table L.

Equation (10) predicts that if the conducting tape covering
the second slot is removed and replaced by a short circuit A,
from the center of the second slot, and then the input admit-
tance of the first slot is measured, the result should satisfy

43.72
(Z122%/241)
(16)

Yy _ 33.76 Y,

Go Z11—(Z12%/Z33)  Go

Zon —
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When the values listed in Table I for Zq1, Zy4, and Zq 5 are
used in (16), computed values of Y,/Go and Y2/GO can be
ascertained. These values have been entered in the sixth and
seventh rows of Table I. The measured values are listed along-
side for comparison.

Finally, (12) of the theory can be put in the form

REET IRERE
Go Go Gy

Z152 ]1/2
Z11Z32

When the various computed values found in Table I are inserted
in (17), the prediction is that Y4 5/Go = 0.153 £—3.1°.

The accurate measurement of Yq9/Gq is difficult. After
some experimentation, the folowing procedure was adopted.
Short circuits were placed 3\;/4 beyond each slot. Slotted lines
were put in tandem with both input ports. A variable attenu-
ator was placed before one slotted line, and a variable phase
shifter before the other. The two branches were fed through a
conventional T junction. But from (4),

a7

Y, 4 v, V,Y Yod Y, V,7Y
_1_=_1+_E_1?: _2_=_2+__1ﬁ_ (18)
Go Go Vi Go Gy Go Va2 Gy

It follows that one can select the attenuator setting such that
| ¥1/¥4 | = 1. If then the phase of V/V is varied, Y14 /G,
and Y54 /G will have loci which are circles of the same size,
centered around Y,/Gq and Yy/Gg, respectively. The radius
of these two equal circles is | ¥y5/Gg |. The phase of the
mutual admittance can be determined from corresponding
points on the two loci.

This experimental procedure resulted in the Smith chart
shown in Fig. 6. From this data, the average measured value of
mutual admittance was deduced tobe Y;5/Go=0.146.—4.2°,

Lastly, let us consider the application of (7) and (8) to the
design of a two-dimensional array. The procedure can be out-
lined as follows.

a) Select the frequency of operation and the waveguide
dimensions.

b) Deduce the length contraction factor f. This can be done
as in the earlier discussion of resonant length for zero
offset.

c) Specify the slot voltage distribution needed to get the
desired pattern and the sum of the active admittances
desired in each branch line waveguide.

d) Solve (7) and (8) simultaneously to give those values of
xp and I, which satisfy the required aperture distribu-
tion and admittance level.

When the above procedure was applied to the design of a
two-by-four array, the results were as shown in Fig. 7. The
specified admittance level was

4 8
2 Y,A/Go = 2 Y, 4/Go =2 +j0.

n=1 n=5

(19)

The measured values were

4 8
Y Yut/Go =1.90 +0 Y ¥o4/Go =1.94 + 0.

n= n=5

[

(20)
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Fig. 6. Active admittance loci for two-slot array.
w Y
a3 4
5| e
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2 | 8
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L | L ‘ |
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No. n {Inches) {Inches)
3y 1 -0.122 0.708
ry 2 +0.060 0.667
| 3 0,099 0.693
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1
to

8 by 10 inch Ground Plane

Fig. 7. Two-by-four slot array.

The specified aperture distribution was uniform amplitude/
uniform phase, so the predicted pattern has a broadside beam,
symmetrical sidelobes, and a 13.5-dB sidelobe level. The exper-
imental H-plane pattern is shown in Fig. 8.

A study of the table of slot lengths and offsets (Fig. 7)
reveals several interesting and surprising things. First, there isa
2:1 range in slot offsets. (Were one to ignore mutual coupling,
or include it but ignore its variability from slot to slot, all off-
sets would be the same.) Second, no slot in this array is self-
resonant; each slot is detuned appropriately to make the indi-
vidual ective admittance resonant, Third, there is a quadrant I/
quadrant III and quadrant II/quadrant IV symmetry to the
lengths and offsets, but no symmetry around the X axis nor
around the Y axis. This can be traced to nonsymmetrical
effects caused by staggering the offsets.

The range of lengths and offsets found for this two-by-four
array illustrates the general observation that small arrays pre-
sent a more difficult design problem than do large arrays. In
the latter, only elements near an edge “see’ a different mutual
coupling environment, so achieving the proper active admit-
tance becomes simpler. Further, mechanical and electrical
tolerances ease off as the array gets larger [9].

Though the details are not being reported here, the above
procedure has been used successfully to design a 12-slot linear
array for a 30 dB side lobe level, a 19-slot linear array for
asymmetric side lobes (all at 20 dB except the inner three on
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Fig. 8. H-plane pattern of two-by-four array described in Fig. 7,
f=8.933 GHz.

db

40
-180 - 144

one side of the main beam at 30 dB) and a 52-element two-
dimensional slot array with a uniform aperture distribution.

CONCLUSIONS

A theory has been presented which can account for the array
behavior of longitudinal shunt slots in terms of the character-
istics of complementary dipoles. Formulas for active, self-, and
mutual admittances of longitudinal slots have been derived.
Slot arrays can be designed by choosing the lengths and offsets
of individual slots such that (7) yields a slot voltage distribution
consistent with the desired pattern, and such that (8) yields an
active admittance distribution consistent with the feed and
match requirements of the array.

The analysis can be repeated, in a step-by-step analog, for
the case of inclined series slots in the broad wall of rectangular
waveguides. It can also be extended to arrays of strip-line-fed
slots.

The theory has been tested experimentally in a variety of
situations involving a single slot, a pair of slots, and a small
two-dimensional array. In general, the agreement has been
found to be quite satisfactory.
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